Transfer learning for raw network traffic detection

نویسندگان

چکیده

Traditional machine learning models used for network intrusion detection systems rely on vast amounts of traffic data with expertly engineered features. The abundance computational and expert resources at the enterprise level allow employment such models; however, these quickly dwindle in edge scenarios. As Internet Battlefield Things (IoBT) networks become common place tactical environments, there is a need improved distributed trained without resources. Transfer – which allows us to take information learned one domain apply it another provides way create distribute towards edge. Using neural networks, we demonstrate feasibility transfer using only raw computationally limited environments. Our results show that transferred one-dimensional convolutional model combined retrained random forest model, obtain over 96% accuracy 5000 training samples devices an time approximately 67 s.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Invariant Representation for Malicious Network Traffic Detection

Statistical learning theory relies on an assumption that the joint distributions of observations and labels are the same in training and testing data. However, this assumption is violated in many real world problems, such as training a detector of malicious network traffic that can change over time as a result of attacker’s detection evasion efforts. We propose to address this problem by creati...

متن کامل

Learning Rules for Anomaly Detection of Hostile Network Traffic

We introduce an algorithm called LERAD that learns rules for finding rare events in nominal time-series data with long range dependencies. We use LERAD to find anomalies in network packets and TCP sessions to detect novel intrusions. We evaluated LERAD on the 1999 DARPA/Lincoln Laboratory intrusion detection evaluation data set and on traffic collected in a university departmental server enviro...

متن کامل

Network Traffic Anomaly Detection

This paper presents a tutorial for network anomaly detection, focusing on non-signature-based approaches. Network traffic anomalies are unusual and significant changes in the traffic of a network. Networks play an important role in today’s social and economic infrastructures. The security of the network becomes crucial, and network traffic anomaly detection constitutes an important part of netw...

متن کامل

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

Hardware Supports for Network Traffic Anomaly Detection

Modern network systems are plagued with unknown attacks every time. To detect these attacks, network security systems monitor the anomalous status of network traffics. Most of researches have focused on the software-based anomaly detection and, thus, they have suffered from huge performance declines in high speed and bandwidth networks over one giga bps on one side. Due to the potential perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2023

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2022.118641